MENU

Repülőgép hajtóművek fejlesztése

 

 

A légitársaságok számára a hatékonyságot növelő legfontosabb tényezők, mindig is az utaslétszám és a repülőgépek hatótávolságának a növelése voltak. Ezen követelmények mindig is arra ösztönözték a hajtóműveket gyártó óriás vállalatokat ( Rolls Royce, General Electric, Pratt & Whitney és így tovább ) hogy egyre korszerűbb, költséghatékonyabb hajtóműveket fejlesszenek ki. Ezen felül követelménnyé vált az is hogy egyre nagyobb méretű, tolóerejű hajtóműveket gyártsanak a piacon megjelenő új repülőgépek ( Boeing 777, Boeing 787 Dreamliner, Airbus A 350, Airbus A380 ) számára. Azonban mint minden  fejlesztésnek, méretnövelésnek, egyszerűen fizikai, technikai korlátai vannak, mivel képzeljük el hogy egy 575 tonnás ( Airbus, A 380 ) repülőgépet ahhoz hogy levegőbe tudja emelni a hajtóművei, ehhez közel 127 tonnányi tolóerőre van szükség, akkor a kérdés hogy van e olyan hajtómű, amely képes ennek a hatalmas tolóerőnek a felét előállítani.

www.rolls-royce.com/civil/products/largeaircraft/trent_900/.

 

General Electric GE90-115B hajtómű

 

A válasz egyszerű, jelenleg nincs, mert még a jelenlegi csúcstartó a Boeing-777-es számára kifejlesztett 52 tonnás tolóerejű General Electric GE90-115B hajtómű  is nem elégséges az A 380 felemeléséhez. A 777-es hajtóműve egyébként tolóerejét és méreteit tekintve is csúcstartó. 3,25 méteres átmérőjével, 7,29 méteres hosszával és több, mint 8 tonnányi tömegével nem csak tolóerejét, de geometriai méreteit tekintve is ez a világ legnagyobb hajtóműve. Ebben a hajtóműátmérőben egyébként elférne egy Embraer törzse, de a 737-es törzsének szélességénél is alig fél méterrel kisebb. Nagyjából még az egyötödével kellene növelni a Ge90-es tolóerejét, hogy két darab szárnyra szerelt hajtómű képes legyen megemelni egy A-380-ast. Mivel a tolóerő és a hatásfok szorosan összefügg a geometriai méretekkel (a tolóerő jelentős része a legnagyobb ármérőjű első, kívülről is jól látható, un. ventilátor, működését tekintve inkább egy csőlégcsavarhoz hasonló fokozaton képződik), ez további átmérő növekedést is jelentene. (www.geaviation.com/engines/commercial/ge90/ge90-115b.html ).

A méret további növelése pedig kérdésessé teszi a felszerelhetőségét az A-380-asra, vagy bármi másra, hacsak nem születik egy ehhez módosított változat – de ez már gyakorlatilag egy új típusú hajtómű fejlesztését jelentene, aminek a kifejlesztése nem valószínű a következő egy-két évtizedben.

A jelenlegi hajtómű fejlesztések csúcsát valószínűleg az A-350-eshez és a Boeing 787-eshez kifejlesztett, Rolls Royce "Trent" és GE hajtóművek jelentik, ám ezek is “megrekednek” a 33-42 tonna közötti tolóerőnél. Sem az Airbus A-350-es ( www.airbus.com/aircraftfamilies/passengeraircraft/a350xwbfamily/ ) sem a Boeing 787-es ( www.boeing.com/boeing/commercial/787family/ ) nem kapott a jelenlegi csúcstartónál nagyobb hajtóműveket. Valószínűleg beállni készül az az egyensúly, amikor a jelenlegi és közeljövőbeli technológiával és működési elvvel nem érdemes ennél nagyobb hajtóművet készíteni – ahogy az bekövetkezett a gőzgépnél, majd a dugattyús motoroknál is, ezek is elérték teljesítményük és az ésszerű fejleszthetőség csúcsát – új elvre volt szükség.

Visszatérve az A-380-ashoz – ha a tolóerőt nézzük, akkor ilyen repülőgép méret esetén nincs más választás, mint a négy hajtóműves elrendezés, ami sajnos  fogyasztásban és bonyolultságban (vezérlés, üzemanyag-rendszerek, tartóelemek és azok tömege, stb.) de karbantartásban is egyértelműen drágább mint a két hajtóműves elrendezés.

 

 

Akkor milyen lehetőségek  maradtak a fejlesztők kezében, agyában, ha már a méret korlát ( tolóerő korlát ) a belátható időben nem fog változni. A fejlődés nem tolóerőben és méretekben, hanem gazdaságosságban fog tovább folyni. Ugyanezt minél könnyebbre, kisebb fogyasztásúra, környezetbarát technológiákkal előállíthatóra, egyszerűbb karbantarthatóságúra és olcsóbb gyárthatóságúra készíteni – ez sem kis kihívás a következő évtizedekre.

A hajtóművek fejlesztésében az egyik élenjáró óriás a Rolls-Royce, mely létrehozott egy "Trent" elnevezésű hajtómű családot melynél  az évek elteltével méretben és szerkezetben is korszerűsítéseket hajtott végre. Nagyon népszerű hajtómű típus a légitársaságok körében, így az A 380-as repülőgépeknél is, ahol csak egyetlen versenytársa van, ez pedig a GP 7000-es tipusú hajtómű, mely a General Electric és Pratt & Whitney közös fejlesztése. A legújabb Trent családok, a Trent 900-as ( Airbus A 380-as számára készült ) és a Trent 1000-es ( Boeing 787 Dreamliner számára készült ).

 

 

 

 

A Trent 900-as kizárólag az Airbus A380-asra készült, melyben több új technológiát is bevezettek. A ventilátorfokozat lapátjai „hátra vannak nyilazva”, így adott méret és 15 százalékkal kisebb súly mellett nagyobb teljesítményt ad le. Ugyancsak ez az első a Trent sorozatban, amelyik nagynyomású tengelye ellentétes irányban forog a közepes és kisnyomású tengelyhez képest. A hajtómű, mely 310 vagy 320 kN tolóerő leadására képes, nyolc közepes és hat nagynyomású kompresszorral, valamint egy-egy nagy és közepes nyomású, továbbá öt kisnyomású turbinával rendelkezik. A magot a Trent 500-asból emelték át, az égéstere osztott, a hajtómű kétáramúsági foka 8.5-8.7, valamint nyomásviszonya 38 körül mozog.

A Trent 1000-es hajtómű, a Boeing legújabb, egyes alkatrészeit főként kompozitokból összeállított repülőgépéhez készült, a General Electric GEnx alternatív felhasználásaként.

Az angol hajtóművet először 2006-ban indították be, majd 2007-ben kapta meg a típusengedélyeket. Az erőforrás eredetileg nem érte el a Boeing által kívánt üzemanyag-fogyasztást, de a Dreamliner program sorozatos késései miatt volt elég idejük javítani a hajtóművön, ám a fejlesztésekkel továbbra sem álltak le.

 

Rolls Royce Trent 1000 hajtómű

 

Végül Rolls-Royce Trent 1000-sekkel a szárnyai alatt emelkedett először a levegőbe a Boeing 787-es 2009. december 15-én. Az hajtóműbe sok újdonságot építettek be: a GEnx-el egyetemben ez az első olyan hajtómű, amely egy repülőgéptípusra ugyanolyan csatlakozó felületet kínál, ezzel csökkentve a hajtóművek cseréjének idejét. Ugyancsak először már nincs jelen a hajtómű levegőjének a megcsapolása (az ún. bleed air), ezzel nagyobb teljesítmény és kisebb áramlási veszteséget tudtak elérni. A hátranyilazott ventilátorfokozat mögött egymással ellentétesen forgó közepes és nagynyomású kompresszort találunk, emellett a korábbi gyakorlattal ellentétben a közepes nyomású fokozatról veszik le a segédberendezések hajtását. A karbantartási költségek csökkentése érdekében a korábbiakhoz képest kevesebb alkatrészt használtak fel. Az 5765 kiló gramm súlyú  erőforrást nagyjából 30 000 darab alkatrészből rakták össze. A 308-346 kN ( Altípusai szerint ) tolóerővel rendelkező hajtómű nyomásviszonya ( Pressure ratio ) 52:1-hez, magas kétáramúsági foka ( Bypass ratio ) 11:1-hez közelít.

A Trent 1000 típusú hajtómű szerkezeti leírása röviden a következő: Ventilátor fokozat ( Fan blades ):  A ventilátorfokozat lapátjai titánium -ból készültek, alakjuk hátranyilazott és nagy húrhosszal rendelkeznek. A lapátok belül üregesek, ennek köszönhetően a súlyuk megközelíti az ugyanekkora kompozit lapátokét. Alakjának köszönhetően a lapátvégek sebessége kisebb a Trent sorozaton korábban alkalmazottakhoz képest, így kisebb a zajszintje is. Mivel a Trent 1000-es ventilátorfokozatának lapátjai jobban megvannak csavarva, így külső tárgyak (pl. madarak) kisebb eséllyel találják el a lapátokat. E mellett a kompresszorba való belépő levegő is jobban “el van dugva” a fő légáramlat elől, így idegen tárgyak egyszerűen túl nehezek ahhoz, hogy a kompresszorba kerüljenek. A tesztek kimutatták, hogy madárral való ütközés esetén a hajtómű teljesítménye mindössze 2 százalékkal csökken a hatóság által maximálisan engedélyezett 25 százalékhoz képest. A kompresszorba beömlő levegő első megvezető lapátjait a közepes nyomású kompresszor nyolcas fokozatától megcsapolt levegővel fűtik, ha szükség van rá, ezzel csökkentve a hajtómű jegesedésének kockázatát. Az kisnyomású forgórész tengelye felszállóteljesítményen 2700 fordulat/perccel pörög, így a 284 centiméter átmérőjű ventillátor fkozat lapátvégei 900 mérföldet tesznek meg óránként, ami több mint a hangsebesség. Közepes nyomású kompresszor ( Intermediate compressor ): A Kawasaki Heavy Industries által gyártott közepes nyomású kompresszorba ugyancsak sok újdonságot építettek be. A lapátokat, melyek titániumból készültek, háromdimenziós tervezőprogrammal alkották meg ás hegesztett titán borítás veszi őket körül.  A fejlesztések között szerepel, hogy a segédberendezések meghajtása a hagyományos nagynyomású tengely helyett a közepes nyomású tengelyről történik. Ennek köszönhetően süllyedés közben akár 50 százalékkal kevesebbet fogyaszt a hajtómű, ami rövid távú repülés esetén akár 6 százalékos üzemanyag-megtakarítást eredményez. Ugyancsak emiatt az alapgázi beállítás 30 százalékkal alacsonyabb lett, valamint stabilabbá vált az egész kompresszorszekció működése. Az egyik ok, hogy ezt a megoldást alkalmazták, az a Boeing 787-esben sokkal nagyobb számban használt elektromos berendezések. A korábbi megoldásokkal ellentétben elektromos meghajtású a hidraulika- és fékszivattyú is, valamint a kabin és a jégtelenítő levegője is egy elektromos kompresszortól érkezik a hajtómű kompresszor megcsapolt levegője (bleed air) helyett. Így a Dreamliner generátorai majdnem ötször több áramot termelnek, mint ahogy az a korábbi hasonló méretű gépek esetében volt. Mivel a kabin levegőjét nem a kompresszortól veszik el, így a magrésznek már nem kell annyi levegőt összenyomni, így annak mérete és súlya redukálható lett. Ugyancsak emiatt a hajtómű zajszintje is sokat csökkent. Nagynyomású kompresszor ( High pressure compressor ): A nagynyomású kompresszor hat fokozatból áll. A lapátok titániumból, míg a tárcsák egy RR1000 jelzésű anyagból készültek, ez utóbbi előnye a nagy hő- és korrózióállóság. A tárcsákat egymáshoz dörzshegesztéssel rögzítették. A Trent 900-as sorozattól kezdve a nagynyomású tengely ellentétes irányban forog a közepes és kisnyomású tengelyhez képest, ezzel kisebb lett az áramlási veszteség. Fejlesztettek a lapátok tömítésén is. A nagynyomású tengely fordulatszáma immáron eléri a 13 500 fordulat/percet, a lapátvégek sebessége 1200 mérföld óránként. Égőtér ( Combustion chamber ): A gyűrűs égőtér egyterű, úgynevezett Phase 5 osztott megoldású. Az égéstérbe mindössze 18 befecskendező juttatja be az üzemanyagot. A korábbi Phase 5-ös égőterekhez képest a nagyobb sűrítési viszony mellett is kis mennyiségű nitrogén-oxid keletkezik. Az égőtér elsődleges része igen szegény, valamint a keverék rövid időt tölt el, így csökkentve az égéstermék nitrogén-oxid tartalmát. Az égőtér körüli borítást egy külső tartó falra rögzítették, így a kevesebb levegő szükséges a nikkelötvözet védelmére, így több levegőt lehet felhasználni az égés táplálására, valamint az égéstermék hűtésére. Nagy és közepes nyomású turbina ( High and Intermediate turbine ): A Trent 1000-esben egy-egy fokozatú nagy- és közepesnyomású turbina található. A lapátok titániumból, míg a tárcsa RR1000-es anyagból készültek. A lapátokat és a vezetőfalakat ugyancsak háromdimenziós áramlástervező programmal készítették. A lapátok számát tovább csökkentették, a Trent 1000-ben mindössze 66 nagynyomású turbinalapát található. A turbinát eltömődésvédelemmel látták el. A lapátok belseje úgynevezett „soulble core”-ral van ellátva, ezzel még komplexebb hűtőcsatornákat tudnak létrehozni, így még magasabb lehet az égőtérből kikerülő gázok hőmérséklete. Kisnyomású turbina ( Low pressure turbine ): A hajtóműben hatfokozatú kisnyomású turbina található. A teljes szekció felfüggesztése olyan, hogy a vibrációt csak minimális mértékben adja át a sárkányszerkezetnek, emellett a borítás hűtve is van. A turbina lapátjait a Mitsubishi Heavy Industries, a tárcsát a Industria de Turbo Propulsores gyártja. Hajtómű vezérlése:  A hajtómű FADEC (Full Authority Digital Engine Control) berendezését is a Goodrich gyártja. A vezérlőegység a korábbiakhoz képest jóval kisebb és könnyebb lett. A moduláris architektúra lehetővé teszi, hogy könnyű és gyors legyen a meghibásodott alkatrészek cseréje. Ugyancsak ők gyártják a hajtómű fogyasztásmérőjét, mely már elektromosan kalibrálható, így a karbantartása sokkal gyorsabb lett. Emellett a hajtómű vezérlőszoftvere műholdas kapcsolatban áll a repülőgép ACARS rendszerén keresztül a Rolls-Royce központjával, így a meghibásodott, vagy sérült alkatrészeket már azelőtt elküldhetik a szerelő bázisra, mielőtt a repülőgép földet ért volna.

A hajtómű gyártók igyekeznek csökkenteni a hajtóművek üzemanyag fogyasztását, azonban a kerozin világpiaci ára időnként hirtelen megemelkedik. Ez még jobban előtérbe helyezi azt a tevékenységet, hogy a gyárak gyorsan reagáljanak a hajtóművek üzemanyag fogyasztásának csökkentésére. A különféle gyártók más és más utat követnek, illetve ha valamelyik módszer ezek közül beválik, akkor azt nagy előszeretettel  "utánozzák le" a másikról. Élen jár a fejlesztésben az amerikai Pratt & Whitney hajtómű gyár is, mely kidolgozott a gázturbinák tervezésénél egy olyan eljárást, amely a jóval hatékonyabb légcsavaros gázturbina elvéhez hasonlít. Ez az új trend a GTF, azaz a "geared turbofan", melynek a lényege, hogy egy áttétel segítségével lecsökkentik a gázturbina fan ( Ventilátor ) fokozatának a fordulatszámát az optimálisra, s ennek eredményeként az egész hajtómű nagyobb hatékonysággal működik, mint az azt meghajtó turbina, illetve maga a fokozat is. Ennek köszönhetően akár 12 %-al is csökken az üzemanyag fogyasztás például a CFM56-os hajtóműhöz képest ( A korábbi "Boeing 737 Classic" típusok alap hajtóműve )  illetve mintegy negyven százalékkal  kevesebb az üzemeltetési költség. De ezzel párhuzamosan a zaj- és a káros anyag kibocsátás mértéke is kisebb. Ez a módszer azt is lehetővé teszi, hogy tovább növeljék a ventilátor átmérőjét. Ez a hajtómű típus képezi az Airbus A320-as család, illetve a Boeing B 737NG repülőgépeinek az alap hajtómű készletét.

Egyre nagyobb mértékben alkalmaznak a gyártók kompozit anyagokat a hajtóművekben. Ennek köszönhetően jelentősen csökken a szerkezetek súlya, ami közvetve szintén üzemanyag.megtakarítást eredményez, illetve hosszabb is lesz az élettartamuk a hajtóműveknek az új, erősebb anyagok alkalmazásának köszönhetően. Ez szintén költség csökkentő tényező. További szakmai újítás a "wide chord fan", azaz a szélesebb lapátok alkalmazásának az elterjedése, ami azt jelenti, hogy nagyobb húrhosszú lapátokat építenek be. Ennek köszönhetően kevesebb lapátra van szükség a fokozatokban, s emiatt szintén csökken a súly, illetve a kevesebb lapát miatt kisebb energia kell a levegő átáramoltatására. Az így felszabaduló többletenergiát szintén a meghajtásra lehet fordítani. Ez is csökkenti az üzemanyag fogyasztást.

 

 

Nagyobb húrhosszú ventillátor lapátok, "Wide-chord fan blads"

 

Fejlesztik a hajtóműveket gyártó cégek a gázturbinát vezérlő szoftvereket ( FADEC - Full authority digital engine control ), vagy az a kohászati eljárás, amelynek révén egyetlen "kristályból" hozzák létre a turbinalapátot. Ez még erősebbé, jobb minőségűvé teszi a szerkezetet, s ez is ugyanolyan előnyökkel jár, mint a már említett újdonságok. Ma már a légitársaságok online módon figyelik a repülőgépek hajtóműveinek a működését, illetve folyamatosan diagnosztizálják az adatokat. Ez sokat segit az üzemeltetési trendek megállapításában, s ennek révén jobban fel lehet készülni a karbantartási, javítási feladatokra. Ezenfelül nagyban csökkenti a fogyasztást és növeli a sugárhajtóművek élettartamát, ha felszálláskor nem teljes gázzal emelkednek fel a gépek, hanem csak a súly-, az időjárási és a repülőtéri viszonyoknak megfelelően kiszámított minimálisan szükséges tolóerővel. Nagyobb flottával rendelkező légitársaságoknál szokás az, hogy a gépcsaládon belül cserélgetik a hajtóműveket, ami hosszú távon üzemanyag megtakarítást eredményez.

 

FADEC , hajtómű vezérlő rendszer

Újév

Borongós napok tünjetek tova, Okkal szomorú ne legyél soha!

Lépteid, kisérje töretlen szerencse, Derűs percek rajzoljanak mosolyt a szemedre!

Oszoljanak el az óévnek sötét árnyai, Gúzsból szabaduljanak a képzelet szárnyai!

Újévet hozzon a nesztelen iramló idő, Jöjjön már a rég várt, csodálatos jövő!

Évek, ha múltok, ha elszálltok napok, Vidámságot, örömet számolatlan adjatok!

Elfusson most az óévnek malaca, Többé ne legyen senkinek panasza!

Kerüljön betegség, bánat messzire, Írmagjuk is vesszen mind a semmibe!

Vágyaid sorra, valóra váljanak,Álnok szavak többé ne bántsanak!

Növekedjen az igaz barátok tábora, Okosan élj, ne legyél boldogtalan soha!

Kivánom neked, az újév hozzon új reményeket!

 

x